GCNF Fortification Breakout Workshop Session

Optimizing Resilience in times of COVID-19; the importance of micronutrients and food fortification to strengthen immunity for school children

Monique Smorenburg Director, Nutrition Improvement EMEA

The COVID-19 pandemic deepens the malnutrition crisis

Lockdown situations disrupted :

- Food supply
- Household incomes
- Access to critical services for health, nutrition & education
- Social Safety net programs delivery
- Calories and micronutrients intake

Pandemic will increase the risk of all forms of malnutrition:

- Rise in Stunting and Wasting
- Significant increase in Low Birth Weight
- Micronutrient deficiencies will increase and affect mainly women and children
- Poor nutrition in First 1000 days is likely to lead to a COVID generation of children

Global Monitoring of School Meals During COVID-19 School Closures

World Food Programme: https://cdn.wfp.org/2020/school-feeding-map/

UK doctors demand free meals for kids as COVID fuels hunger

The Pandemic Tears a Hole in a Vital Child Nutrition Safety Net

COVID-19 forces cuts to school meal programs across Canada

Micronutrients support in health & immunity

- Micronutrients play a role in many functions including immunity
- Food fortification can improve dietary quality, fill population nutrient gaps, and deliver health benefits to the population at large

Staple Food Fortification is a powerful practice to address micronutrient deficiencies across the population

Food fortification which adds essential vitamins and minerals to commonly consumed foods such as **maize/wheat flour, sugar, edible oil, rice and salt**, is one of the most cost-effective, proven

interventions that is readily available to address vitamin and mineral 48% industrially milled deficiencies.

ndustrially milled 30% industrially milled e flour is fortified wheat flour is fortified 1% industrially milled rice is fortified

Why school meal programs?

Every day, millions of children around the world go to school on an empty stomach – hunger affects their concentration and ability to learn. There are also millions of children – particularly girls – who simply do not go school because their families need them to help in the fields or perform domestic duties. In conflict-affected countries, where children are twice as likely to be out of school than their peers in stable countries – 2.5-times more likely in the case of girls.

Pathways and entry points for nutrition-sensitive school-feeding

School feeding system, policy, financing, institutional capacity, coordination, community involvement

Opportunities for school meal programs

- School meals provide safety nets, incentivize school enrolment, and regular attendance
- School meals programs ideally offer a complete package:
 - Nutrition education
 - Nutrient dense food provision
 - School-based health and nutrition services such as deworming
- Nutritious school meals can offer benefits to schoolchildren, e.g.
 - Improved micronutrient status
 - Support physical and cognitive function
- School meals provide an opportunity
 - for different actors to join forces
 - for countries to contribute to their nutrition goals

Fortified foods as part of school menu's

- Of the countries surveyed in the Global Survey of School Meal Programs, 87% of school meal programs cite the goal of improving students' nutrition among their objectives.
- 68% Of programs serve fortified foods on the school menu; common fortified food items include oil, salt, grains/cereals (including rice), and corn-soy blend or biscuits. The most common micronutrients added include iron, iodine, vitamin A, zinc, and folic acid, among others

		% of programs that include Special training for									
		Objective to meet nutritional goals	Nutritionists involved	Fortified foods	cooks / caterers in nutrition	Objective to reduce obesity	Micronutrient supplements	Biofortified foods			
Region	Sub-Saharan Africa	88	65	67	58	9	27	15			
	South Asia, East Asia & Pacific	83	64	73	81	23	25	19			
	Middle East & North Africa	100	71	50	50	43	33	0			
	Latin America & Caribbean	78	100	89	86	44	0	0			
	North America, Europe & Central Asia	89	71	56	78	56	0	0			
Income group	Low income	90	60	68	62	6	25	15			
	Lower middle income	85	71	69	67	21	34	6			
	Upper middle income	76	75	74	73	29	7	28			
	High income	94	85	53	86	76	0	0			
All		87	69	68	67	23	22	12			

Rice fortification: adding back the micronutrients

Fortified rice in schoolchildren

Author	Country	Age	Group	Fortificants	Reduced anemia	Iron status improvement	Anemia parameters	Iron status parameters	Nutrition status parameters	Health outcomes
Angeles-Agdeppa 2018	Philippines ^{2a}	6—8 y	Schoolchildren	2 groups: FePP and FeSO4			↑ Hb			
Angeles-Agdeppa 2008	Philippines ^{2b}	6–9 y	Schoolchildren	Iron	\checkmark	_	↑ Hb ↓ Anemia	— Ferritin		
Moretti 2006	India ⁸	6—13 y	Schoolchildren	Iron	_	_	— Hb — Anemia	— Iron status parameters		
Radhika 2011	India ⁹	5—11 y	Schoolchildren	Iron	_		— Hb — Anemia	↑ Ferritin ↓ Iron deficiency		
Zimmermann 2006	India ¹⁰	5—9 у	Schoolchildren	Iron	_	\checkmark	— Hb — Anemia	↑ Transferrin receptor — Serum ferritin ↓ iron deficiency		
Pinkaew 2013	Thailand ¹¹	4–12 y	Schoolchildren	Zinc, Iron, and Vitamin A	_		↑ Hb	— Ferritin ↓ iron deficiency	↑ Serum zinc	
Pinkaew 2014	Thailand ¹²	8—12 y	Schoolchildren	Zinc, Iron, and Vitamin A	_	\checkmark			↑ Serum vitamin A	
Thankachan 2012	India ¹³	6—12 y	Schoolchildren	Iron (two doses)	_		— Hb	— Iron status parameters	↑ Vitamin B12 ↓ Homocysteine	↑ Physical — Cognitive performance
Perignon 2016 Florentino 2018 Kuong 2019 De Gier 2016	Cambodia ^{14,18, 24,26}	6–16 y	N=2440 Schoolchildren	vitamin A, thiamin, vitamin B6, B12, folic acid, niacin, iron and zinc		\checkmark	↑ Hb ↓ Anemia	↑ Ferritin ↑ Transferrin receptor	 ↑ Folate status ↑ Zinc status ↓ Zinc deficiency ↓ Folate deficiency 	↑ Parasite infection ↑ Cognitive performance
Huo 2013	China ²⁵	11-16 y	N=320 Schoolchildren	b-carotene, thiamin, riboflavin, vitamin B3, folic acid, iron and zinc fortified rice iron fortified soy sauce and VA fortified cooking oil		\checkmark	↑ Hb ↓ Anemia	↑ Ferritin ↓ Iron deficiency	↑ Zinc ↑ Vitamin A ↑ Vitamin B1 ↑ Vitamin B2	
Parker 2016	Burundi ¹⁵	~ 9 y	N=1071 Schoolchildren	Iron, zinc, thiamine, folic acid	_		— Hb			
Hussain 2014	India ⁴	5-8-y	N=222 Schoolchildren	iron, β-carotene, vitamin A, iron + vitamin A and iron + β-carotene			↑ Hb ↓ Anemia	↑ Ferritin ↓ Iron deficiency	↑ Retinol	

Impact and potential of fortification to increase the micronutrient resiliency of school meals

Summary of evidence for fortified rice in school children

Improved nutrition status

- Reduced anemia and iron-deficiency anemia
- Improved zinc and iron status
- Improved vitamin A, B1, B2, B12, and folate status

Other health benefits

- Improved physical performance
- Improved cognition (block design test)

Food fortification interventions targeting school children: Africa

Micronutrient Powders

Rice fortification

WFP Senegal:

School feeding pilot;
 Fortified rice

Madagascar MOH:

- High level of traction for rice fortification

Private sector Nigeria:

- RTE meals with fortified rice

Happy birthday!

October New works

May

0

Grade ? Time Table

Numbers 1-100
 Wind and a second sec

Print - Capital Letters Drukskrif - Hoofletters

20/20

ABCDEFGHI

JKLMNOPQR

iden

BRIGHT SCIENCE. BRIGHTER LIVING.™

